sábado, 9 de junho de 2007

Curiosidades

Curiosidades com números inteiros

12345679 x 9 = 111111111
12345679 x 18 = 222222222
12345679 x 27 = 333333333
12345679 x 36 = 444444444
12345679 x 45 = 555555555
12345679 x 54 = 666666666
12345679 x 63 = 777777777
12345679 x 72 = 888888888
12345679 x 81 = 999999999

9 x 9 + 7 = 88
9 x 98 + 6 = 888
9 x 987 + 5 = 8888
9 x 9876 + 4 = 88888
9 x 98765 + 3 = 888888
9 x 987654 + 2 = 8888888
9 x 9876543 + 1 = 88888888
9 x 98765432 + 0 = 888888888

9 x 1 + 2 = 11
9 x 12 + 3 = 111
9 x 123 + 4 = 1111
9 x 1234 + 5 = 11111
9 x 12345 + 6 = 111111
9 x 123456 + 7 = 1111111
9 x 1234567 + 8 = 11111111
9 x 12345678 + 9 = 111111111
9 x 123456789 + 10 = 1111111111

11 x 11 = 121
111 x 111 = 12321
1111 x 1111 = 1234321
11111 x 11111 = 123454321
111111 x 111111 = 12345654321
1111111 x 1111111 = 1234567654321
11111111 x 11111111 = 123456787654321
111111111 x 111111111 = 12345678987654321

9 x 7 = 63
99 x 77 = 7623
999 x 777 = 776223
9999 x 7777 = 77762223
99999 x 77777 = 7777622223
999999 x 777777 = 777776222223
9999999 x 7777777 = 77777762222223
99999999 x 77777777 = 7777777622222223

1 x 7 + 3 = 10
14 x 7 + 2 = 100
142 x 7 + 6 = 1000
1428 x 7 + 4 = 10000
14285 x 7 + 5 = 100000
142857 x 7 + 1 = 1000000
1428571 x 7 + 3 = 10000000
14285714 x 7 + 2 = 100000000
142857142 x 7 + 6 = 1000000000
1428571428 x 7 + 4 = 10000000000
14285714285 x 7 + 5 = 100000000000
142857142857 x 7 + 1 = 1000000000000

9 x 9 = 81
99 x 99 = 9801
999 x 999 = 998001
9999 x 9999 = 99980001
99999 x 99999 = 9999800001
999999 x 999999 = 999998000001

12 x 12 = 144, 21 x 21 = 441
13 x 13 = 169, 31 x 31 = 961
102x102 = 10404, 201x201 = 40401
103x103 = 10609, 301x301 = 90601
112x112 = 12544, 211x211 = 44521
122x122 = 14884, 221x221 = 48841

99 = 9+8+7+65+4+3+2+1
100 = 1+2+3+4+5+6+7+8×9
134498697 = 1 + 2^3 + 4^5 + 6^7 + 8^9
1000 = 8 + 8 + 8 + 88 + 888

45 = 8+12+5+20, 8+2=12-2=5x2=20÷2=10
100 = 12+20+4+64, 12+4=20-4=4x4=64÷4=16
225 = 1+23+45+67+89, 89-67=67-45=45-23=23-1=22

5^2 + 2^1 = (5-2)^(2+1)

Notação: Para indicar que um número x está elevado a y, escreverei x^y, que é uma notação comum no meio científico.



Introdução aos números inteiros

Na época do Renascimento, os matemáticos sentiram cada vez mais a necessidade de um novo tipo de número, que pudesse ser a solução de equações tão simples como:

x + 2 = 0, 2x + 10 = 0, 4y + 4 = 0

As Ciências precisavam de símbolos para representar temperaturas acima e abaixo de 0º C, por exemplo. Astrônomos e físicos procuravam uma linguagem matemática para expressar a atração entre dois corpos.



Quando um corpo age com uma força sobre outro corpo, este reage com uma força de mesma intensidade e sentido contrário. Mas a tarefa não ficava somente em criar um novo número, era preciso encontrar um símbolo que permitisse operar com esse número criado, de modo prático e eficiente.



Sobre a origem dos sinais

A idéia sobre os sinais vem dos comerciantes da época. Os matemáticos encontraram a melhor notação para expressar esse novo tipo de número. Veja como faziam tais comerciantes:

Suponha que um deles tivesse em seu armazém duas sacas de feijão com 10 kg cada. Se esse comerciante vendesse num dia 8 Kg de feijão, ele escrevia o número 8 com um traço (semelhante ao atual sinal de menos) na frente para não se esquecer de que no saco faltava 8 Kg de feijão.

Mas se ele resolvesse despejar no outro saco os 2 Kg que restaram, escrevia o número 2 com dois traços cruzados (semelhante ao atual sinal de mais) na frente, para se lembrar de que no saco havia 2 Kg de feijão a mais que a quantidade inicial.

Com essa nova notação,os matemáticos poderiam, não somente indicar as quantidades, mas também representar o ganho ou a perda dessas quantidades, através de números, com sinal positivo ou negativo.



O conjunto Z dos Números Inteiros

Definimos o conjunto dos números inteiros como a reunião do conjunto dos números naturais, o conjunto dos opostos dos números naturais e o zero. Este conjunto é denotado pela letra Z (Zahlen=número em alemão). Este conjunto pode ser escrito por:

Z = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4,...}

Exemplos de subconjuntos do conjunto Z

(a) Conjunto dos números inteiros excluído o número zero:

Z* = {..., -4, -3, -2, -1, 1, 2, 3, 4,...}

(b) Conjunto dos números inteiros não negativos:

Z+ = {0, 1, 2, 3, 4,...}

(c) Conjunto dos números inteiros não positivos:

Z- = {..., -4, -3, -2, -1, 0}

Observação: Não existe padronização para estas notações.



Reta Numerada

Uma forma de representar geometricamente o conjunto Z é construir uma reta numerada, considerar o número 0 como a origem e o número 1 em algum lugar, tomar a unidade de medida como a distância entre 0 e 1 e por os números inteiros da seguinte maneira:

Nenhum comentário:

Loading...

Boas vindas

Espero que voce aproveite ess e tempo para se aprimorar mais tanto na leitura, escrita como nos fatos mais atuais

Quem sou eu

rio de janeiro, riode janeiro
Professor que se interessa sobre os processos de como estudar do aluno